Классификация средств компьютерной математики



Компьютерная математика – это совокупность методов и средств, обес­печивающих максимально комфортную и быструю подготовку алгоритмов и программ для решения математических задач любой сложности, при этом в подавляющем большинстве случаев с высокой степенью визуализации всех этапов решения. Эффективность использования всех этих систем, разумеет­ся, существенно зависит от производительности компьютера. Требования к компьютеру всегда оговариваются в руководствах пользователя, отметим, что, как правило, необходим процессор не хуже Pentium.

Средства компьютерной математики интенсивно внедряются в аппарат­ные средства современной вычислительной техники. Пожалуй, ярче всего это проявляется в развитии программируемых микрокалькуляторов. Даже калькуляторы начала 80-х годов удивляли знающих пользователей своими математическими способностями. Например, помещаемые в нагрудном кар­мане рубашки научные калькуляторы НР-15С запросто вычисляли сложные интегралы и производные функций, оперировали матрицами с действитель­ными и комплексными элементами, решали системы линейных и нелиней­ных уравнений и позволяли довольно просто реализовать практически лю­бые численные методы вычислений.

Новые поколения микрокалькуляторов освоили символьные вычисления и графику умеренного разрешения. Так, микрокалькуляторы HP-48S и НР-95 способны выполнять множество аналитических операций, есть даже микро­калькуляторы TI-89 и TI-92 с встроенной системой символьной ма­тематики класса Derive, довольно подробно описанной в данной книге. Эти и многие другие калькуляторы заметно продвинулись в части визуализации вычислений как при вводе данных, так и выводе их результатов. Экраны их дисплеев уже отображают таблицы, математические формулы и графики.

Современные микропроцессоры, математические сопроцессоры и графические процессоры видеоплат используют средст­ва компьютерной математики, связанные с обработкой массивов информации, ин­терполяцией и аппроксимацией функ­ций, дискретным преобразованием Фу­рье и т.д. К сожалению, доступ пользо­вателей к аппаратным средствам компь­ютерной математики практически за­крыт. В тоже время с позиций математи­ки в этих средствах нет ничего нового, что не было бы «прозрачно» реализова­но в современных программных средст­вах ЭВМ – в системах компьютерной математики. И вообще надо сказать, что программные средства математики развиваются намного быстрее аппаратных. Именно поэтому специфичные аппаратные реализации компьютерной математики далее мы рассматривать не будем.

Мы будем также считать, что наши возможности ограничены средства­ми наиболее распространенных и доступных персональных компьютеров (ПК). Узкоспециальные вопросы организации параллельных вычислений, специальных алгоритмов вычислений, используемых в аппаратной реализа­ции компьютеров (включая средства графических процессоров, команды муль­тимедиа-расширений ММХ и так далее), мы рассматривать не будем по уже отмеченным выше обстоятельствам.

В настоящее время компьютерные математические системы можно (дос­таточно условно) подразделить на 7 основных классов:
Системы для численных расчетов

  1. Табличные процессоры
  2. Матричные системы
  3. Системы для статистических расчетов
  4. Системы для специальных расчетов
  5. Системы для аналитических расчетов (компьютерной алгебры)
  6. Универсальные системы

Каждая из математических систем имеет определенные специфические для нее свойства, которые необходимо учитывать при решении конкретных математических задач.

Компьютерные математические системы как класс специализированных программных средств, рассчитанных на индивидуальную работу, возникли лишь в начале 80-х годов XX века. Этому способствовало зарождение в это же время индустрии персональных компьютеров (ПК), что открыло дорогу таким системам к массовому пользователю. Отдельные системы (например, MATLAB) были известны задолго этого, но они были реализованы лишь на больших ЭВМ и были доступными ограниченному кругу лиц. Эти системы представляли средства коллективного пользования, применение которых даже для решения простых задач требовало участия многих специалистов.

Сейчас такие системы благодаря их установке на ПК доступны педаго­гам и ученым, студентам и школьникам не только в коллективном, но и в индивидуальном порядке. Они используются в университетах и вузах, шко­лах и колледжах (особенно с математическим уклоном). Велика роль таких систем и в автоматизации научно-технических расчетов и в математическом моделировании природных явлений и технических систем и устройств.

В настоящее время применяется множество математических программ – от простых калькуляторов, встроенных в операционные системы типа Win­dows, до универсальных систем, при полной инсталляции занимающих мно­гие сотни Мбайт памяти на жестком диске (MATLAB 5.2.1 и 5.3), и программ­ных комплексов, интегрирующих ряд таких программ. Здесь особо надо отметить системы класса Mathcad, новые версии которых содержат системный интегратор MathConnex, обеспечивающий прямую интеграцию Mathcad с почти полутора десятками программ разного класса.

Интересно и еще одно направление интеграции — объединение возмож­ностей текстовых редакторов (прежде всего в форматах Word и LaTEX) с математическими системами. К таким разработкам относятся Scientific NoteBook, MathOffice, Scientific Workplace и др. Подобные программные комплексы позволяют готовить электронные документы и книги высочайше­го качества с «живыми» примерами математических расчетов.

Помимо указанного деления на классы, правомерно деление компьютер­ных математических систем и по сложности решаемых ими задач. Так, мож­но выделить системы начального уровня (например, Derive и MuPAD), ори­ентированные на решение задач школьного образования и применение их студентами младших курсов вузов. К системам среднего класса можно отне­сти новую систему MuPAD и ставшую весьма популярной систему Mathcad. Высший класс представлен системами компьютерной алгебры Mathematica 2/3 и Maple V R3/R4/R5.

А такого «монстра» среди систем компьютерной математики, как мат­ричную систему MATLAB 5.0/5.3.1 с ее многочисленными пакетами расши­рения и трудно укладываемой в нашем сознании стоимостью, можно отне­сти к особо элитным и потому дорогим системам для избранных и весьма придирчивых пользователей. Это как бы «Мерседес-600″ в мире математиче­ских систем. Тем не менее в этой книге вы ознакомитесь со всеми этими системами.

К сожалению, на нашем и мировом рынках массовые системы компью­терной математики представлены только зарубежными программами. Это связано с тем, что современные программы этого класса относятся к числу наиболее сложных программных продуктов, требующих для своей разработ­ки больших интеллектуальных, трудовых и финансовых затрат. Пик разра­ботки таких программ пришелся на начало 90-х годов, что совпало с распа­дом СССР и возникновением в России глубокого экономического и финансо­вого кризиса. В таких условиях, увы, создание программ, способных конку­рировать с многочисленными зарубежными программами компьютерной ма­тематики, стало практически невозможным. Однако благодаря известным дос­тоинствам операционных систем класса Windows нет никаких принципиаль­ных ограничений на применение зарубежных программ компьютерной мате­матики русскоязычными пользователями, хотя определенные неудобства (на­пример, англоязычные справочные системы) есть налицо.

Запись опубликована в рубрике Информатика, Математика. Добавьте в закладки постоянную ссылку.